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Sexual Selection on Plumage Color in a North Carolina Population of Eastern Bluebirds 

Callie Younginer 

Dr. Lynn Siefferman 

 

Abstract 

Throughout nature, species exhibit exaggerated ornamentation that aids in the securement 

of mates. Sexual selection acts on variation in mating success and is prevalent in the color of 

plumage of many species of birds. Sexual dimorphism exists in species with conventional sex 

roles, but in species with comparable amounts of parental investment, females and males are 

often similarly colored. Male mate choice and/or female competition may explain this 

ornamentation in females. Eastern bluebirds (Sialia sialis) are a socially monogamous passerine 

with biparental care that display sexually dichromatic coloration; males have brilliant blue head 

and rump plumage and chestnut breasts while females have duller color. In both male and female 

eastern bluebirds, studies have provided evidence that the UV-reflectance in their blue plumage 

is a product of sexual selection as more ornamented individuals experience higher reproductive 

success (Siefferman & Hill 2003, 2005a; Hubbard 2009). In this study, I used a 9-year dataset to 

explore evidence of sexual selection on plumage coloration in a southern Appalachian mountain 

population of eastern bluebirds. I found that females that were more-ornamented (greater UV-

reflectance of structural plumage and darker, more red chromatic breasts) tended to lay eggs 

earlier in the season and had heavier body mass compared to the less-ornamented females. 

Among males, there were no significant relationships between color and reproductive success 

suggesting that females may not assess male plumage coloration. My data suggest that, in this 

population, female plumage coloration may be driven by sexual selection and could be a signal 
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of quality to conspecifics. Male mate choice for a high-quality partner or female competition 

over breeding resources may be driving this selection.  
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Introduction: 

In many species, individuals express elaborate traits used in the acquisition of mates. 

Like natural selection which acts on the traits that result in the highest fitness, sexual selection 

acts on traits directly related to mating success (Andersson 1994). Darwin first introduced this 

concept when trying to explain why males have elaborate and seemly non-adaptive 

ornamentation as it is costly to produce and highly conspicuous to predators (Darwin 1871). 

Male-male competition and female choice were proposed as the central mechanisms to explain 

male ornamentation (Tobias et al. 2012). The benefits of attracting mates leads to higher 

reproductive success and outweighs the cost of bearing these ornaments and perpetuates them 

into future generations (Andersson 1994). Females, however, often have subdued traits compared 

to males and there is debate as to what mechanisms drive their ornamentation. The genetic 

correlation hypothesis states that female traits are simply byproducts from the selection on male 

traits; because the two sexes share most of their genome, selection on male traits will drag along 

expression of elaborate traits in females (Amundsen 2000; Tobias et al. 2012). Alternatively, 

there may be direct selection acting on female ornamentation through female-female competition 

or male mate choice (Amundsen 2000; Kraaijeveld et al 2007; Clutton-brock 2009). Among 

females, coloration may act as a signal of dominance in the competition for breeding resources. 

Males may also use female ornamentation when selecting mates (Clutton-brock 2009).  

Females are often regarded as the choosier sex as females in most species invest more 

energy into reproduction; egg production and raising young is energetically expensive compared 

to male investment in sperm (Tobias et al. 2012). However, in species in which males and 

females provide similar levels of parental care, females may benefit from signaling with 

ornaments, and males would benefit from being just as choosy as females in mate choice. Traits 
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that influence female choice may also influence male mate choice. In zebra finches (Taeniopygia 

guttata), males prefer to mate with the more fecund females demonstrating that males are able to 

distinguish between females of variable fecundity and experience the benefits of mate selection 

(Jones et al. 2001). Mutual mate choice occurs in crested auklets (Aethia cristatella); both males 

and females prefer mates with larger crests (Jones et al. 1993).  

Males in many bird species display brightly-colored plumage while females typically are 

subdued in their color (Hill and McGraw 2006). Plumage coloration in birds is produced by 

either carotenoid pigments, melanin pigments, or feather microstructure (Hill and McGraw 

2006). These three mechanisms involve physiological costs to produce or maintain and therefore 

can signal individual quality to conspecifics. In species with biparental care, females may also 

exhibit increased coloration. When male and female birds are similarly ornamented it could 

suggest sexual selecting acting on females. For example, male bluethroats (Luscinia svecica) 

prefer more colorful females as mates and those females are also in better body condition 

(Amundsen 1997). In blue tits (Cyanistes caeruleus), the ultraviolet coloration of females 

predicts reproductive success (Henderson et al. 2013). These studies suggest that males should 

gain fitness benefits from choosing to pair with brightly colored females.  

The eastern bluebird is a socially monogamous songbird that exhibits biparental care. 

They are sexually dichromatic, and females are ornamented but display duller color than males. 

Males have blue, ultraviolet structural coloration across their head, rump, and tail feathers and 

melanin-based chestnut breasts. In an Alabama population, male bluebirds that are more-

ornamented have higher reproductive success indicating sexual selection (Siefferman and Hill 

2003). Males with more ornamentation were also better competitors for high-quality territories 

(Siefferman and Hill 2005b) and tend to be mated to females that invested more in offspring care 
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(Ligon and Hill 2010). Contradictory evidence exists as to whether the plumage coloration for 

female eastern bluebirds is sexually selected. In an Alabama population, Siefferman and Hill 

(2005a) found that females with more chromatic UV-blue coloration lay eggs earlier in the 

season, provision offspring at higher rates and achieve higher reproductive success. However, in 

a Virginia population, blue tail coloration of females was only weakly predictive of reproductive 

success (Hubbard 2009).  

Here, I test the hypothesis that plumage coloration in male and female eastern bluebirds 

is representative of their individual quality and could therefore be a sexually selected trait. Using 

a long-term data set, I explore relationships between plumage coloration and 1) female body size 

and 2) fitness metrics including: breeding onset date, hatching success, and the number of 

offspring fledged. I predicted that birds with brighter, more ultraviolet reflecting rumps and 

darker, more red, chromatic breasts (that is, females with more male-like coloration), would 

commence breeding earlier in the season, experience higher hatching success, rear more 

offspring to independence, and exhibit higher body mass.  

Methods: 

I analyzed a dataset from a population of eastern bluebirds in Watauga County, North 

Carolina (36°11" 39"N, 81°44" 5"W) from 2009 until 2017. These data were collected by Lynn 

Siefferman and students in her lab who monitor 300 nest boxes from late April until early 

August. Nest data recorded included: the date the first egg was laid, the number of eggs laid, and 

the number of nestlings fledged per nest. Hatching success was calculated as the number of 

fledglings divided by the clutch size. Eastern bluebirds in this population typically have about 

two broods per season, and thus I also calculated the total number of nestlings that fledged per 

mated pair per season to quantify reproductive success for each adult. Each year, adult birds 
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were captured and banded with one aluminum U.S.G.S. band and a unique combination of three 

colored bands used for identification. Upon capture, body mass was measured, and feathers were 

collected for spectrometric analyses including: nine feathers from the rump and nine from the 

breast. Across the years, 547 adults were captured (313 females and 234 males). 

Plumage Color Analysis 

After collection, feathers were stored in envelopes in a climate-controlled environment 

until spectral analysis. Feathers were taped and arranged onto black paper how they would lay 

naturally on the bird. Following Siefferman and Hill (2003) the spectral data was recorded using 

a reflectance spectrometer (range = 250-889 nm; Model S2000, Ocean Optics, Dunedin, FL, 

USA) equipped with a micron fiber-optic probe placed at a 90° angle to the feather surface. The 

probe was fixed to read at a 6-mm distance from the feather and recorded a 2-mm diameter area 

with the use of a deuterium bulb (UV light source) and a tungsten-halogen bulb (visible light 

source). All data was produced against a white standard (Labsphere, Inc.). For the breast and 

rump feathers, five spectral measurements were recorded for each region picking up the probe 

between each measurement and those measures were averaged. 

Color was quantified using three standard descriptors of reflectance spectra: brightness, 

chroma, and hue. Brightness is the total amount of light reflected by the feather and was 

calculated as the sum of reflectance from 300 to 700 nm. Chroma was calculated differently for 

the blue and chestnut colored regions on the birds as these two colors have different spectral 

properties. Chroma is a measure of spectral purity, and for the blue structural coloration of the 

rump and tail, I calculated ultraviolet (UV) chroma as the ratio of reflectance in the UV part of 

the spectrum (300-400 nm) to the total amount of reflectance (300-700 nm). Red chroma from 

the chestnut breast coloration was calculated as the ratio of reflectance in the red part of the 
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spectrum (575-700 nm) to the total amount of reflectance (300-700 nm). Hue is the major color 

seen reflected by the feather. For the blue structural coloration, I calculated hue as the 

wavelength at the peak reflectance point. For chestnut breast coloration, I did not include a hue 

measurement because it was nearly uniform among birds.  

Statistical Analyses 

 I standardized our data by year, as plumage color varied significantly between breeding 

seasons. Male and female plumage color was also significantly different from one another, so I 

split the data by sex to analyze the two sexes separately. I used linear mixed models to 

investigate whether adult plumage coloration was related to adult reproductive success and 

fitness. In our models, fixed effects included first egg date (Julian date at which a bird laid its 

first egg of the breeding season), total yearly fledged (number of nestlings fledged from nest 

throughout entire breeding season), hatching success (number of nestlings that hatched from the 

first clutch of the breeding season) and mass. All fixed effects were standardized as there was 

variation from year to year. Our random effect was adult bird band number (ID). The predictor 

variables were five plumage color variables: breast brightness (BB), breast red chroma (BRC), 

rump brightness (RB), rump UV chroma (RUVC), and rump hue (RH). I excluded interactions 

between color variables as these regions are inherently correlated and not the focus of these 

models. I ran all models with interactions between color variables and mass, but when compared 

to models excluding interactions, I found no difference in our overall results, so I chose the more 

parsimonious models excluding these interactions. I used Akaike Information Criterion (AIC) 

model fitting to explore how well models explained our data (Burnham and Anderson 2002). 

Models that did not differ by >2 AIC points were considered equal. As many models resulted in 
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inconclusive results, I used variable importance and coefficients from a model including each 

variable to help us in selecting the most likely models (Burnham and Anderson 2002).  

All statistics were conducted using R version 3.4.3. Linear mixed models were created 

using the R packages lme4 and lmerTest. The MuMln package was used to average models and 

determine model likelihood. 

Results: 

First Egg Date  

It was not possible to distinguish the best model for explaining first egg date in females 

as the delta AIC values are extremely close between models and the weights (Wi) are relatively 

weak (Table 1). Ranking the variables by their importance within the set of models suggests that 

the best model would most likely include rump UV chroma, breast red chroma, and breast 

brightness as these three variables hold the most weight within the models (RUVC = 95.1%, 

BRC = 60.5%, BB = 59.4%; Table 9). As a pair, rump UV chroma and breast red chroma 

occurred in the models together 57.0% of the time, and rump UV chroma and breast brightness 

occurred 56.7% of the time. All three top predictor variables show up together 26.1% of the time. 

Rump UV chroma had the largest coefficient and was a significant predictor when in a model 

including all variables (p = 0.0153) suggesting it is the most important predictor variable for first 

egg date in females. Using a linear regression, rump UV chroma was significant in predicting 

first egg date in females (Figure 1; Adj. R2 = 0.05252, F (1,311) = 18.3, p ˂ 0.0001). The most 

likely model then for explaining first egg date in females includes either rump UV chroma and 

breast red chroma or rump UV chroma and breast brightness, but it does not likely include all 

three. Model selection suggested that females that laid eggs earlier in the season tended to have 
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blue structural plumage with greater UV chroma, and chestnut breast coloration with greater red 

chroma and darker coloration, thus they tend to be females with more ornamented (or more 

male-like) plumage (Table 1). 

No model best explained the date that the males mate laid the first egg as the delta AIC 

values were extremely close and the weights (Wi) are relatively weak (Table 2). Breast 

brightness and rump hue hold the largest weight within the models (BB = 57.2%, RH = 57.5%; 

Table 10). Rump hue had the largest coefficient when in a model containing all color variables, 

but it was not significant (p=0.0614). The best fitting model would most likely include rump hue 

and breast brightness as predictors. Thus, in males, coloration is not a good predictor of their 

mate’s egg laying dates. 

Total Yearly Fledged 

There was evidence, although weak, that the null model was the best fitting model to 

explain total offspring fledged for females as the weight of the null model was relatively large 

(Table 3). The next best models (using delta AIC values) included red chroma of breast and UV 

chroma of rump though these models have slightly lower weights. Variable importance 

suggested that brightness of rump carried the most weight in the models (RB = 64%; Table 9), 

and, in a model including all variables, it also had the largest coefficient though it was not 

significant (p = 0.0876). These results suggest that females that fledge more offspring during the 

breeding season tended to show a weak tendency to have lighter chestnut (more female-like) 

breast plumage (Table 3). There was also a weak trend such that females with duller (more 

female-like) blue structural plumage fledged more offspring during the breeding season (Table 

3).  
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The first three suggested models for total offspring fledged for males were 

indistinguishable in their importance as their delta AIC values are close and their weights were 

approximately equal (Table 4). Variable important showed that UV chroma of rump and rump 

brightness were about equal in weight among models (RUVC = 43.5%, RB = 42.0%; Table 10). 

As a pair, they only weighed 14.1% in the models which is roughly the same weight of the null 

model (null model Wi = 11.2%). The null model, a model including just rump UV chroma, or a 

model including just rump brightness were the most likely models. Rump UV chroma had the 

largest coefficient when in a model including all variables, though no variable present 

significantly predicts total offspring fledged in males. Thus, male coloration was not a good 

predictor of the total amount of offspring fledged by his mate in the breeding season.  

Hatching Success 

There was evidence, although weak, that the null model was the best fitting model to 

explain hatching success for females as the model weight was relatively large (Table 5). Variable 

importance showed that rump hue had the most impact within the possible models on hatching 

success for females (RH = 49.0 %; Table 9). Rump hue had the largest coefficient in a model 

including all color variables, though it was not significant (p = 0.0837). This points to females 

with greater hatching success exhibiting more longer-wavelength hues in their blue structural 

plumage, thus they were females that are less ornamented (more female-like).  

A likely model for explaining hatching success in males included rump brightness as a 

predictor as it has the lowest AIC value and the highest weight of the models (Table 6). Rump 

brightness had the highest weight in terms of variable importance (66.8%; Table 10). In a model 

including all variables, rump brightness had the largest coefficient, though it was not significant 
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(p=0.0908). These results suggest that males that were mated with females that had higher 

hatching success tended to have brighter blue structural plumage. 

Mass 

There was evidence in support of the 1st model in predicting mass of females as the delta 

AIC between it and the next model was relatively large and the weight was large in comparison 

to the rest of the models (Wi = 19.7%). Rump UV chroma had the highest variable importance 

followed by breast brightness (RUVC = 95.9%, BB = 65.1%; Table 9). As a pair, rump UV 

chroma and breast brightness occurred in the models 62.3% of the time. Rump UV chroma had 

the largest coefficient and was most significant in predicting mass in the model including all 

variables (p = 0.0133). Breast brightness had a similarly large coefficient and was also 

significant in predicting mass in a model including all variables (p = 0.0473). Using a linear 

regression, rump UV chroma was a significant predictor of mass (Figure 2; Adj. R2 = 0.04123, 

F(1,311) = 14.43, p ˂ 0.0001). Rump UV chroma and breast brightness were likely included in the 

best model. This suggests that females that were heavier tended to have blue structural plumage 

with greater UV chroma and darker breasts, thus they were more ornamented (more male-like).  

There was support that the null model was the most likely model in explaining mass of 

males as the delta AIC between it and the next model were relatively large and the weight was 

large in comparison to the other models (Table 8). All variables were relatively similar in weight 

within the possible models (Table 10). In a model including all variables, breast brightness had 

the largest coefficient though it was not significant (p = 0.514). Thus, male coloration was not a 

good predictor of body mass.  
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Discussion: 

In this study, I found evidence that sexual selection may be acting on female plumage 

color in a population of eastern bluebirds in the Southern Appalachians. In this population, more-

ornamented females laid eggs earlier in the breeding season and were heavier than less-

ornamented females. This suggests that plumage coloration in females is related to individual 

quality and has the potential to signal useful information to conspecifics possibly through male 

mate choice or female-female competitive interactions. Unlike a population in Alabama, I found 

no evidence of a relationship between male plumage coloration and reproductive parameters 

suggesting no evidence of sexual selection currently acting on male plumage color in this 

Southern Appalachian population. 

First egg laying date can be a good representation of individual quality because 

depending on the level of physiological condition, a bird may be limited on when they can begin 

raising offspring. A bird who initiates egg laying sooner is likely an individual of higher-quality 

as the earlier a bird can begin may dictate how many successful nesting opportunities they can 

achieve in the breeding season; earlier egg laying dates set up the potential for a greater number 

of total offspring fledged. The eastern bluebird is an obligate secondary cavity nester, and the 

availability of nesting cavities is a limiting resource for breeding bluebird pairs. As eastern 

bluebirds exhibit bi-parental care with the male helping provision nestlings, both the male and 

female actively defend their territory throughout the breeding season. Actively defending a 

territory is energetically demanding, so it would take the highest quality individuals to be able to 

both secure and defend nest boxes (Ligon 1999). Females in this study that exhibited greater 

ornamentation laid eggs earlier in the season (Figure 1). The relationship between female 

plumage color and first egg date in this population suggest that color can be a good predictor of 



14 
 

individual quality in the early stages of breeding. Females that are more-ornamented may be 

using their color as a signal to mediate competitive interactions among other females for nest 

boxes or in male mate choice.  

It is interesting that in this study females that were more-ornamented laid eggs sooner but 

did not necessarily produce a greater number of offspring in comparison to less-ornamented 

females. This relationship may be a product of trade-offs between ornamentation and 

reproduction or that the eastern bluebirds in this Southern Appalachian population deal with 

stochastic factors that can impact if a nesting attempt is successful; unforeseen predation and 

weather can fail an early nest by a high-quality female. Breeding early is risky; in the Southern 

Appalachians, early season cold snaps can lead to nest failure. The patterns in this dataset could 

have been clearer if we had been able to capture early season nesters before nest failure.  

Females in this population that were more-ornamented had a heavier mass than less-

ornamented females (Figure 2). This suggests that female plumage color has the potential to 

signal individual quality to conspecifics. The handicap hypothesis explains that higher quality 

individuals can more easily afford to display elaborate secondary sexual characteristics as these 

traits are expensive to develop, grow, and maintain (Zahavi 1975). Multiple lines of evidence 

from the Alabama population suggests that blue structural coloration in female bluebirds is 

condition dependent; female blue structural color is dependent on nutrition (Siefferman and Hill 

2005a), and the blue color in both sexes is positively affected by wetter and cooler weather 

during molt likely of the positive effects on arthropod abundance (Warnock 2017). Individual 

quality is often measured using body mass as the energy demands for the production and 

maintenance of color are high; if an individual can both display a greater degree of 

ornamentation and have a larger mass than conspecifics, then it indicates the better body 
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condition of that bird (Siefferman and Hill 2005a; McGraw 2007). There are advantages for 

males and females to choose a high-quality mate as these individuals may provide numerous 

benefits including resources within a territory and good genes (Andersson 1994). 

There is no evidence that sexual selection is currently maintaining elaborate plumage 

coloration of male eastern bluebirds in the Southern Appalachians; my data revealed no 

significant relationships between plumage color and reproductive parameters. Brighter males 

were not mated to females that laid eggs earlier and color did not predict total reproductive 

output. Further, I found no significant relationships between color and body mass in males. 

Together, there is no evidence that plumage has the potential to signal individual quality. These 

patterns differ from those of an Alabama population, where males that are more-ornamented 

experience greater reproductive success (Siefferman and Hill 2003). These differing patterns of 

plumage color and reproductive parameters in the Southern Appalachian and Alabama 

populations suggest geographic variation in the strength of sexual selection occurring. There are 

other avian species wherein patterns of sexual selection vary geographically. In barn swallows 

(Hirundo rustica), the traits that are currently driven by sexual selection (outer tail length, breast 

coloration) vary geographically (Romano et al 2016). Further, female common yellowthroats 

(Geothylpis trichas) in two different populations prefer different ornaments and, in each 

population, the male traits under selection reliably indicate male quality (Whittingham et al 

2015). In a Wisconsin population, female common yellowthroats prefer males with larger black 

masks while females in New York chose mates based on bib size (Dunn et al 2008). Indeed, 

there is geographic variation in plumage coloration in eastern bluebirds; birds in the more 

southern extent of their breeding range are more colorful (Warnock 2017). Environmental 

factors, how signals are perceived or strength of females’ preferences may be differently 
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affecting regional sexual selection for traits. Alternatively, the lack of relationships between male 

quality and color in this study may be because our sample size for males was smaller than that of 

females. It is easier to capture females than males during the incubation stage. As nest boxes are 

a limiting resource for cavity nesting birds, we may have an over saturated field site given that 

we have 300 nest boxes, and many are often unused. A study that limits cavity availability may 

allow researchers to better see trends associated with intra-sexual competition. 

There is some evidence that suggest that males may be paying attention to female 

plumage color in this population. Males show favoritism to sons over daughters in this 

population only when they are mated to more colorful females (Barrios-Miller 2013). In a 

Virginia population, males did not seem to prefer colorful females (Hubbard 2009). Female birds 

may paying attention to female coloration and could use it to gauge competitive ability when 

competing over nest boxes. In female blue tits, their UV-reflecting crown ornamentation affected 

the female’s reaction towards female intruders (Midamegbe et al 2011). In this NC bluebird 

population, the more-ornamented females laid eggs earlier suggesting selection for highly-

ornamented females may be driven by female-female competition for nest boxes early in the 

season. Melanin-based pigmentation and microstructures forming structural plumage in feathers 

are known to be expensive to produce and maintain, thus they can be honest signals of quality 

(Hill and McGraw 2006). In the Kentucky warbler (Geothlypis formosa), melanin-pigmented 

ornaments can signal condition and explain variation in mating success (Parker et al 2003). 

Although male eastern bluebirds are more colorful than females, evidence of sexual 

selection in females exists from three different populations including this study (Siefferman and 

Hill 2003, 2005a; Hubbard 2009); highly-ornamented females from both Alabama and Virginia 

populations experienced greater reproductive success. In the Alabama population, male 
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ornamentation predicted their competitive ability, and males view territorial intruding males as 

threats when they are more-ornamented (Siefferman and Hill 2005b; Mercadante 2014). The role 

of female color in mediating female-female interactions has not yet been studied in bluebirds but 

such research would help understand the mechanisms of sexual selection driving more-

ornamented females to lay eggs earlier. In this Southern Appalachian population, bluebirds are 

not only competing among conspecifics for nest boxes, but they are also dealing with pressure 

from tree swallows (Tachycineta bicolor) undergoing a southward range expansion into the 

bluebirds’ range. Aggression in female secondary cavity nesters is an important trait that may 

determine if securing a nest box is successful. In the pied flycatcher (Ficedula hypoleuca), 

forehead patch signals fighting ability in males as well as playing a role in intrasexual 

competition between females (Morales et al 2014).  

The results from this study point to sexual selection acting on the plumage color of 

female eastern bluebirds. As the mechanisms for this to act are still unclear, studies should look 

at the relationship between female aggression and competitive ability as it relates to plumage 

color to determine if competition over resources is driving selection for more-ornamented 

females. Female aggression as a sexually selected trait is not well represented in the literature but 

the few studies looking at this have produced interesting results; female tree swallows that 

successfully obtained nest boxes were significantly more aggressive than females that did not, 

suggesting the importance of this trait in female-female competitive interactions (Rosvall 2008). 

Due to their obligate cavity nesting life style, eastern bluebird populations are easily studied, and 

thus future research should focus on a more comprehensive approach to understanding patterns 

of geographic variation in sexual selection and the drivers behind these patterns.  
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Tables and Figures: 

Figure 1: The relationship between first egg date (FED) and rump UV chroma in female eastern 

bluebirds (n = 313, Adj. R2 = 0.05252, p ˂ 0.001).  
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Figure 2: The relationship between mass and rump UV chroma in female eastern bluebirds (n = 

313, Adj. R2 = 0.04123, p ˂ 0.001).  
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Table 1: Model selection for plumage color variables predicting first egg date (FED) in female 

eastern bluebirds. 

Model Δ AICc Wi R2 

BRC + RUVC  0.00 0.131 0.306 

BB + RUVC 0.11 0.124 0.367 

BB + BRC +RUVC 0.36 0.110 0.324 

BB + RH + RUVC 0.54 0.100 0.384 

BRC + RH + RUVC 0.76 0.090 0.320 

BB + BRC + RH + RUVC 0.96 0.081 0.341 

BRC + RB + RUVC 1.84 0.052 0.315 

BB + RB + RUVC 2.11 0.046 0.371 

BB + BRC + RB + RUVC 2.36 0.040 0.329 

BB + RB + RH + RUVC 2.56 0.037 0.388 

 

Table 2: Model selection for plumage color variables predicting first egg date (FED) in male 

eastern bluebirds. 

Model Δ AICc Wi R2 

BB  0.00 0.075 0.181 

BRC + RH + RUVC 0.22 0.068 0.175 

BB + RH 0.32 0.064 0.202 

BB + RH + RUVC 0.39 0.062 0.202 

BRC + RH  0.50 0.059 0.177 

BRC 0.52 0.058 0.156 

BB + BRC 0.80 0.051 0.165 

BB + BRC + RH 0.90 0.048 0.185 

BB + BRC + RH + RUVC 1.04 0.045 0.184 

BB + RB + RH 1.58 0.034 0.212 
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Table 3: Model selection for plumage color variables predicting total yearly fledged (TYF) in 

female eastern bluebirds. 

Model Δ AICc Wi R2 

Null 0.00 0.123 0.113 

RB + RUVC 0.77 0.083 0.143 

RB 1.14 0.069 0.120 

RUVC 1.20 0.067 0.122 

RH 1.56 0.056 0.113 

BB 1.57 0.044 0.115 

BB + RB + RUVC 2.03 0.044 0.148 

BRC 2.04 0.041 0.112 

RB + RH 2.20 0.035 0.122 

BB + RB  2.48 0.030 0.124 

 

Table 4: Model selection for plumage color variables predicting total yearly fledged (TYF) in 

male eastern bluebirds. 

Model Δ AICc Wi R2 

RUVC 0.00 0.113 0.061 

Null 0.02 0.112 0.013 

RB 0.16 0.105 0.048 

RB + RUVC 1.49 0.054 0.070 

RH + RUVC 1.78 0.047 0.070 

BB + RB 1.91 0.044 0.048 

BRC 1.97 0.042 0.020 

BB 1.99 0.042 0.011 

BRC + RB 2.00 0.042 0.059 

BRC + RUVC 2.04 0.041 0.066 
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Table 5: Model selection for plumage color variables predicting hatching success (HS) in female 

eastern bluebirds. 

Model Δ AICc Wi R2 

Null 0.00 0.125 0.815 

RH 0.89 0.080 0.816 

RH RUVC 1.04 0.074 0.825 

RB  1.42 0.061 0.815 

BRC 1.54 0.058 0.803 

RB + RH 1.55 0.057 0.819 

RUVC 1.82 0.050 0.817 

BB 2.04 0.045 0.813 

BRC + RH 2.28 0.040 0.803 

RB + RH + RUVC 2.54 0.035 0.825 

 

Table 6: Model selection for plumage color variables predicting hatching success (HS) in male 

eastern bluebirds. 

Model Δ AICc Wi R2 

RB 0.00 0.160 0.045 

RB + RH 1.10 0.092 0.058 

BRC + RB 1.83 0.064 0.043 

BB + RB 1.88 0.062 0.053 

Null 2.08 0.056 0.045 

RB + RUVC 2.09 0.056 0.046 

RH 2.50 0.046 0.063 

BRC + RB + RH 2.86 0.038 0.056 

RB + RH + RUVC 2.91 0.037 0.061 

BB + RB + RH 2.97 0.036 0.066 
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Table 7: Model selection for plumage color variables predicting mass in female eastern 

bluebirds. 

Model Δ AICc Wi R2 

BB + RUVC 0.00 0.197 0.474 

RUVC 0.97 0.121 0.445 

BB + BRC + RUVC 1.16 0.110 0.446 

BB + RH + RUVC 1.42 0.097 0.476 

BB + RB + RUVC 2.04 0.071 0.474 

RH + RUVC 2.49 0.057 0.444 

BB + BRC + RH + RUVC 2.55 0.055 0.467 

RB + RUVC  2.83 0.048 0.449 

BRC + RUVC 3.03 0.043 0.442 

BB + BRC + RB + RUVC 3.24 0.039 0.465 

 

Table 8: Model selection for plumage color variables predicting mass in male eastern bluebirds 

Model Δ AICc Wi R2 

Null 0.00 0.182 0.294 

BB 1.18 0.101 0.291 

BRC 1.78 0.075 0.275 

RUVC 1.94 0.069 0.290 

RB 2.03 0.066 0.287 

RH  2.07 0.065 0.294 

BB + RUVC 3.20 0.037 0.289 

BB + BRC 3.25 0.036 0.285 

BB + RB 3.27 0.028 0.288 

BB + RH 3.27 0.027 0.282 
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Table 9: Variable Importance of plumage color variables within female models 

 Female Model Selection Tables 

Plumage Color 
Variables 

Table 1: FED  Table 3: TYF  Table 5: HS Table 7: Mass 

RB 27.9 % 64.0 % 34.5 % 27.3 % 

RUVC 95.1 % 40.6 % 35.2 % 95.9 % 

RH 45.3 % 30.4 % 49.0 % 35.0 % 

BB 59.4 % 32.9 % 26.5 % 65.1 % 

BRC 60.5 % 24.7 % 31.5 % 32.0 % 

 

Table 10: Variable Importance of plumage color variables within male models  

 Male Model Selection Tables 

Plumage Color 
Variables 

Table 2: FED  Table 4: TYF  Table 6: HS Table 8: Mass 

RB 26.1 % 42.0 % 66.8 % 26.7 % 

RUVC 41.1 % 43.5 % 29.4 % 27.7 % 

RH 57.5 % 27.4 % 38.9 % 26.2 % 

BB 57.2 % 27.1 % 29.1 % 33.9 % 

BRC 53.0 % 27.1 % 29.0 % 28.1 % 

 


